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1 Introduction

Screen /film mammography is widely recognized as being the only effective imaging
modality for the early detection of breast cancer in asymptomatic women [1]. Screening
asymptomatic women using screen/film mammography has been shown to significantly
reduce breast cancer mortality [2]. Breast cancer currently accounts for 32% of cancer
incidence and 18% of cancer mortality for women in the United States. There were 182,000
new cases of breast cancer in the United States in 1993 and 46,000 deaths. Five year
survival rates are generally very high (93%) for breast cancer staged as being localized,
falling to 72% for regional disease and only 18% for distant disease [3]. The early detection
of breast cancer is clearly a key ingredient of any strategy designed to reduce breast cancer
mortality.

Major advances in screen/film mammography have occurred over the past decade [4]
which have resulted in significant improvements in image resolution and film contrast. Of
major importance is that these improvements have been achieved at reduced radiation
doses. Despite these advances, however, screen/film mammography remains a diagnostic
imaging modality where image interpretation remains very difficult. Breast radiographs are
generally examined for the presence of malignant masses and indirect signs of malignancy
such as the presence of microcalcifications and skin thickening. Unfortunately, it is unlikely
that major improvements in imaging performance will be achieved by technical advances in
screen/film radiography alone.

The major reason for poor visualization of small malignant masses is the minor
difference in x-ray attenuation between normal glandular tissues and malignant disease [5].
This fact makes the detection of small malignancies problematical, especially in younger
women who have denser breast tissue. Although calcifications have high inherent
attenuation properties, their small size also results in a low subject contrast [6]. As a
result, the visibility of small tumors, and any associated microcalcifications, will always be
a problem in mammography as it is currently performed using analog film.

Improvements in the ability of screen/film mammography to detect small tumors and
microcalcifications is more likely to occur by improving the visibility of these features. It
has been suggested that as normally viewed, mammograms display only about 3% of the
information they detect! [7].

Our approach to feature analysis and classification is motivated in part by recently
discovered biological mechanisms of the human visual system [8]. Both multiorientation
and multiresolution are known features of the human visual system. There exist cortical

neurons which respond specifically to stimuli within certain orientations and frequencies.




In this report we describe exciting new results accomplished during our second year of
study. In addition, we have continued our efforts in the development of wavelet transforms
that exploit orientation and frequency selectivity to make mammographic features more
obvious through localized contrast gain. Below, we describe in executive summary, recent
accomplishments made in four subtask areas of our research and development project. The
methodology, approach and experimental studies are reported in detail in the body of this

report.

1.1 Overview of Contents

Contrast enhancement by multiscale nonlinear operators.

We first present a systematic approach to accomplish image contrast enhancement by
multiresolution representations of the dyadic wavelet transform. This work expands upon
our initial algorithms development during the first year of our investigation. We formulate
two examples in which a linear enhancement operator is shown mathematically equivalent
to traditional unsharp masking with a Gaussian low-pass filter. A formal analysis of wavelet
filter selection and associated artifacts is carried out. We show that transform coefficients,
modified within each level of scale by nonlinear operators, can make more obvious unseen
or barely seen features. In addition, we introduce an edge-preserved denoising stage based
on wavelet shrinkage with adaptive thresholding, and demonstrate that noise suppression

and contrast enhancement can be achieved simultaneously within the same framework.

An interactive tool for editing digital mammograms.

The second section of our report describes the design and functionality of XMam, a
computer image editor that allows radiologists to indicate on digitized mammograms
regions considered as having signs of cancer. This is accomplished interactively on the
computer screen by enclosing suspicious regions on the digitized images with polygons.

The purpose of this tool is to develop a database of cases diagnosed with cancer based
on mammographic screening, and later confirmed or denied as positive by biopsy. This
shall allow us to compile a large number of positive, borderline (difficult to diagnose) and
negative cases and provide ground truth for the development and verification of our

computer algorithms for the detection of breast cancer.

Local feature analysis via interval wavelets.
This section of the report introduces a novel approach for accomplishing interactive
feature analysis by overcomplete multiresolution representations. Traditional wavelets

adapted to “life on an interval”, can overcome “edge effects” of wavelet representations on
M




a line. Methods of contrast enhancement are described based on two overcomplete
multiresolution representations (interval wavelets): (1) Deslauriers-Dubuc interpolation, (2)
Average interpolation.

We show quantitatively that transform coefficients, modified by an adaptive non-linear
operator, can make more obvious unseen or barely seen features of mammography without
requiring additional radiation.

Arbitrary regions of interest (ROI) of a mammogram are enhanced by average
interpolation (AI) and Deslauriers-Dubuc interpolation (DD) representations on an
interval. The results of local (ROI) enhancement and global enhancement of
mammographic features are compared quantitatively. We demonstrate that our method
can provide radiologists with an interactive capability to support high-speed localized
processing of selected (suspicious) areas (lesions).

These results augment our preliminary findings accomplished during the first year of
our study, and further demonstrate that features extracted from multiscale representations
can provide an adaptive mechanism for accomplishing local contrast enhancement. In
addition, we show that interval wavelet processing can be carried out in real-time (at video
frame rates) over selected areas of arbitrary shape. This is significant in consideration of
the large image matrix sizes produced by digital detectors. By improving the visualization
of breast pathology we can improve chances of early detection while requiring less time to

evaluate mammograms for most patients.

Quantitative evaluation of clinical images.

The final section of our report relates to the development of objective ways to assess
the performance of wavelet image processing algorithms. The objective is to develop
techniques to evaluate wavelet algorithms so they can then be optimized for clinical use in
mammography.

Substantial progress has been made in the development of techniques to assist in the
quantitative evaluation of wavelet based image processing algorithms. In addition, these
techniques have been applied to optimize the three parameters available in current wavelet

based algorithms. Specific achievements in the past year include:

e a demonstration of the ability of optimized wavelet based algorithms to make visible

simple objects in a noisy background which were previously invisible;

e a demonstration of the inherent superiority of wavelet based algorithms for the
detection of simple objects as compared to algorithms frequently used in medical

imaging including unsharp mask enhancement and median filtering;




e a demonstration of the special requirements of wavelet algorithms when enhancing
the visibility of features of specific interest in mammography, namely

microcalcifications, masses and fibril structures.

In the next section, we shall describe in detail our wavelet processing algorithms,
experimental methods and example results obtained. In addition, we list and summarize
publications and presentations made by our researchers during the past year of our

investigation.




2 Body

2.1 Contrast Enhancement by Multiscale and Nonlinear
Operators

2.1.1 Introduction

Image enhancement techniques have been widely used in radiology, where subjective
quality of images is important for reliable diagnosis. Image contrast is a important factor
in subjective quality. Many algorithms for contrast enhancement have been proposed. A
comprehensive survey is presented in reference [9]. Among them, histogram modification
and edge enhancement techniques are most commonly used.

Histogram modification techniques [10, 11] are attractive due to their simplicity and
speed, and have achieved acceptable results for some applications. In general, a
transformation function is derived from a desired histogram and the histogram of an input
image. Note that the transformation function is in general nonlinear. For continuous
functions, an information lossless transformation may be achieved. However, for digital
images with a finite number of gray levels, such a transformation results in information loss,
due to quantization errors. For example, a subtle edge may be merged with its neighboring
pixels and disappear. Attempts to incorporate local context into the transformation
process have not been fruitful. For example, simple adaptive histogram equalization [12]
with a fixed contextual region (window) cannot adapt to features of distinct sizes.

Most edge enhancement algorithms share a common strategy implicitly: edge detection
and subsequent “crispening”. “Unsharp masking” sharpens edges by subtracting a portion
of a Laplacian filtered component from an original image. This technique was justified as
an approximation of a deblurring process in [13]. Loo et al. [14] studied a extension of this
technique in the context of radiographs. Another extension based on Laplacian filtering
was proposed in [15]. However, these (unsharp masking) techniques remain limited by their
linear and single scale properties, and are less effective for images containing wide range of
features such as mammography. In an attempt to overcome these limitations, a local
contrast measure and nonlinear transform functions were introduced in [16], and
subsequently refined in [17]. However, limitations remain in these nonlinear methods: (1)
They operate on a single scale, (2) There is no explicit noise suppression stage (actually
noise may be amplified significantly), and (3) Nonlinear transform functions were
introduced ad-hoc without a rigorous mathematical analysis of their enhancement

mechanisms.
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Figure 1: One dimensional discrete dyadic wavelet transform (three-level shown).

Recent advancement of wavelet theory has sparked researchers in the applications of
image contrast enhancement [18, 19, 20, 21, 22, 23, 24]. These early studies showed
promise, but remained at an experimental level. In this report, we give a detailed
mathematical analysis of a dyadic wavelet transform, and reveal its connection to
traditional technique of unsharp masking. In addition, we propose a simple nonlinear
enhancement function and analyze the problem of artifacts. Moreover, we introduce an
explicit denoising stage that preserves edges using wavelet shrinkage [25] with adaptive
thresholding.

These techniques are described in the following sections: Section 2.1.2 presents a one
dimensional dyadic wavelet transform. Section 2.1.3 analyzes linear enhancement and its
mathematical connection to traditional unsharp masking. Section 2.1.4 analyzes a simple
nonlinear enhancement by point-wise functional mapping. Section 2.1.5 introduces
denoising with wavelet shrinkage and an adaptive approach for finding threshold values.
Section 2.1.6 presents a two dimensional extension for digital mammography and special
procedures developed for denoising and enhancement that avoid orientation distortions.
Section 2.1.7 presents sample experimental results and comparisons. Finally, Section 2.1.8

concludes our discussion and proposes future research directions.

2.1.2 One dimensional discrete dyadic wavelet transform

A fast algorithm [26] for computing 1-D discrete dyadic wavelet transform (DDWT) is
shown in Figure 1. The left side shows the structure of decomposition, and the right,
reconstruction. For an N-channel structure, there are N — 1 high-pass or band-pass
channels and a low-pass channel. Thus, the decomposition of a signal produces N — 1 sets
of wavelet coefficients and a set of coarse signal.

Since a dyadic wavelet is not an orthogonal basis, there is no down-sampling and

up-sampling shown in Figure 1, and its decomposition filters differ from its reconstruction
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Figure 2: An equivalent multi-channel structure for three-level DDWT.

filters.
For simplicity of analysis, an equivalent multi-channel structure is shown in Figure 2.
This computational structure also makes obvious the potential for parallel processing.
We shall refer to filters F,,(w) and [,,(w) in Figure 2 as forward filters and inverse

filters, respectively. Their relationship to filters G(w), K(w) and H(w) are explicitly given

by
N-1
Fow) = Gw), Fyw)= l}:[ H(2'w),
Fo(w) = [ff H(%)] G(2™w), 1 <m < N —1.
(=0
and

hw) = K@), Iv@)= I] B(2w),
I=0
In(w) = [nﬁl H*(QZw)] K(@2"w), 1 <m <N —1.
1=0
Since filters H(w), G(w) and K(w) satisfy condition
|H@)I + Glw) K (w) =1,
filters F,,(w) and I,,(w) completely cover the frequency domain,
ZZ:FZ(W)II(UJ) =1.

Channel frequency responses C,,{w) can be written as

L= @I , m =0,
Con(w) = Fou(w)I(w) = { T "H(Qlw)nz 1= lHEm)|P] ,1<m < (N=1),
NSt HH(Qlw)H , m=N.
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Figure 3: Channel frequency responses for N =6,n =1 and (a) p=0 and (b) p=1.

As an example, we consider an extension of the class of filters proposed in [26]

W w 2n+p
H(w) = ¢'P2 [cos (—2—)] , (1)
where p =0, or 1. Let
m—1 q
Onale) = | TT cost2 ]
=0
then we can show that ( ) ) .
sin{2™ ' w
G)m = | a7 o~ | >
=[P
and therefore
®m,4n+2p(w) - ®m+1,4n+2p(w) 9 0 S m S (N - ]-)7
Cn(w) = (3)

®N74n+2p(w) y M — N.

Note that @g ,(w) =1, and for 0 <m < N,

2n+p—1

21
Con(2) = Opanin(©) ~ Orransanl) = sin? () 47O anszpia(ec) D [eos (277w)]"

=0

and sin® (“2—’) is the frequency response of the discrete Laplacian operator of impulse
response {1,—2,1}.

O, ,(w) with even exponential ¢ is approximate a Gaussian function, while the
frequency responses of channels (0 < m < N) are approximate a Laplacian of Gaussian.
Figure 3 shows the distinct channel frequency responses, and Figure 4 compares 03 4(w)

and 02 ¢(w) with related Gaussians.
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2.1.3 Linear enhancement and unsharp masking.

Review of unsharp masking

A prototype of unsharp masking was defined [13] as

5(z,y) = s{z,y) — kAs(z,y), (4)

oz
at the level of finest resolution. More versatile formulas were later developed in two ways,

2 2 . . . ..
where A = £ + aa? is the Laplacian operator. However, this original formula worked only

described below.
One way to extend the original formula is based on exploiting the averaging concept
behind the Laplacian operator. The discrete form of the Laplacian operator may be

written as
As(ig) = [s(i+1,7) = 25( ) + 5 = 1,)] + [s(0,§ + 1) — 28(i,5) + (i, — 1]
= 5 {slin) = I 1,5) 5= 1,5) + s(0,) + sl + 1) (.7 = D]}

This formula shows that the discrete Laplacian operator can be implemented by
subtracting from the value of a central point its average neighborhood. Thus, an extended

formula [14] can be written as

8(1,7) = s(i,5) + k[s(i,g) — s(4,7) * h(3, 7)], (5)

where h(7,7) is a discrete averaging filter, and * denotes convolution. In [14], a

equal-weighted averaging mask was used:

[N el < N2, ll < N2
M, y) = { 0, otherwise.

12




Another way to extend the prototype formula [15] came from the idea of

Laplacian-of-Gaussian filter, which expands Equation (4) into

3(z,y) = s(z,y) = kA [s(z,y) * g(z,y)] = s(z,y) — k[s(z,y) * Ag(z,y)], (6)

where g(x,y) is an Gaussian function, and Ag(z,y) is a Laplacian-of-Gaussian filter.
Finally, we mention here that both extensions shown in Equations (5) and (6) are

limited to a single scale.

Inclusion of unsharp masking within DDWT framework

We shall prove that unsharp masking with a Gaussian lowpass filter is included in a
dyadic wavelet framework for enhancement by considering two special cases of linear
enhancement.

In the first case, transform coefficients of channels 0 < m < N —1 are enhanced
(multiplied) by the same gain G > 1, or Gy, = Go > 1, 0 <m < N — 1. The system

frequency response is thus

Viw) = Zamc )+ C(w GOZC — (G — 1)Cn(w)
= Go—(Go—l)CN( )—1+(Go—1)[1—CN( w)] .

The input-output relationship of the system is simply

8i] = s[i] + (Go — 1) {s[e] — s[¢] » ene]} - (7)

Since C(w) is approximately a Gaussian lowpass filter, Equation (7) may be seen as a
1-D counterpart of Equation (5).
In the second case, transform coefficients of a single channel p, 0 <p < N are enhanced

(multiplied) by a gain G, > 1, thus

%: O () + Gy Cy(w) = Zocm(w)—l-(Gp—l)Cp(w) — 14+ (G, — D)Cyw). (8)

Using the filter class of Equation (1), the input-output relationship of the system (8)
can be written as
3li) = sli] = (G — 1) - A{s[i] * Ble]}, (9)
where A[i] is the impulse response of an approximate Gaussian filter. Similarly, Equation
(9) may be seen as a 1-D counterpart of Equation (6).
The inclusion of these two forms of unsharp masking clearly demonstrates the flexibility

and versatility of a dyadic wavelet framework.
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2.1.4 Nonlinear enhancement by functional mapping

Linear enhancement can be seen as a mapping of wavelet coefficients by a linear function
E,.(z) = Ghz. Therefore, a direct extension of the linear enhancement is a nonlinear
mapping function E,(z).

For linear enhancement, selection of filters G(w) (and thus K(w)) made no difference.

However, we shall see that the selection of filters is critical for the nonlinear case.

Nonlinear enhancement I: Laplacian filter.

A discrete Laplacian operator can be implemented by the filter

Glw) =—4 [sin (%)]2, or g[n]={1,-2,1},

such that g[n] * s[n] = s[n 4+ 1] — 2s[n] + s[n — 1].

In addition, both filters H(w) and K(w) can also be symmetric,

o= (5

Both forward and inverse filters (0 < m < N — 1) can be derived as

and

Fow) = —4 [sin(2"0)]" O on(w) = —dsin’ (g) ™ s () = Glw)Anm () (10)
and
I (w) = —@m,gn(M)jI lnz:g [cos (Zm_lw”?l = —T'p(w).

Note that the forward filters Fi,(w) (0 < m < N) can be interpreted as two cascaded
2
operations, a Gaussian averaging of O,, 2,42(w) and the Laplacian of —4 [sin(%)] , while
the set of inverse filters I,,,(w) are low-pass filters. In this case, wavelet coefficients may be

written simply as
wn[i] = A {s[i] * A [2]}
where A is the discrete Laplacian operator, and A, [i] is approximately a Gaussian filter.

This means that each wavelet coefficient w,,[7] is dependent on the local contrast of the

original signal at ¢.




Figure 5: (a) E(z) and (b) é(z), both with T'= 0.5 and K = 20.

The basic guidelines for designing a nonlinear enhancement function are:

(1) An area of low contrast should be enhanced more than an area of high contrast. This

is equivalent to saying that small values of w,,[7] should have larger gains.
(2) A sharp edge should not be blurred.
Such functions may be further subjected to the constraints of:

(1) Monotonicity, in order not to change the position of local extrema, nor create new

extrema, and

(2) Antisymmetry, £(—xz) = —E(xz), in order to preserve phase polarity for “edge

crispening”.
A simple three-segment function that satisfies these conditions is shown in Figure 5,

_(K=1T it e<-T
E(z)={ Kz Jif 2| <T p =a+6(2) (11)
v+ (K- ,if z>7T

where K > 1 and

Sy =< (K -1z, iflz|<T,

—(K -1T, ifz<-T,
(K — )T, ifz>T.

Thus, an enhanced signal can be written as
3[n] = Z E,. {s[n] * fm[n]} * tm[n] + s[n] * fn[n] * in[n]

= Z fm n *Zm + Z 6m {A *)‘m[ ])} *im[72]
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Figure 6: 1-D contrast enhancement by four-level dyadic wavelet analysis with
(a) a linear operator with Ko = 2.3, and (b) a nonlinear operator with ¢ = 0.1 and Ko = 7.

or,
N-1

8[n] = s[n] — Z:O(Sm {A (s[n] * An[n])} * Y n]. (12)

We point out that the formula of Equation (12) can be seen as a multiscale and
nonlinear extension of the original unsharp masking defined by Equation (6).

The enhancement operator &, has two free parameters: threshold T}, and gain K,,. In
our experimental studies, K,, = Ky, 0 <m < N — 1, and 7, =t x max{|wn[n]|}, where
0 < t < 1 was user specified. For ¢ = 1.0, wavelet coeflicients at levels 0 <m < N —1 will
be multiplied by a gain of Ky, previously shown to be equivalent to unsharp masking. This
means our nonlinear algorithm includes unsharp masking as a subset. Iigure 6 shows a
numerical example comparing linear and nonlinear enhancement. Note the lack of
enhancement for the leftmost edge, for the case of the linear operator.

We argue that multiscale unsharp masking as defined by Equation (12) makes an

marked improvement over traditional techniques in two respects:

1. The fast multiscale (or multimask) decomposition efficiently searches features existing

in different scales, making a try-and-fail strategy of window selection unnecessary.

2. The nonlinear algorithm enhances small features in each scale without blurring edges

of larger features, making simultaneous enhancement features of all sizes possible.

Furthermore, artifacts possibly created by a nonlinear enhancement operator can be
limited by careful filter selection and constraints. For example, the arguments presented

below assure that no new extrema will be created within each channel.
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1. Filters are zero-phase. No spatial shifting exists in the transform space.

2. E(z) is a monotonically increasing function (Such a mapping will not produce new
extrema points. Since at point xq, F [f(zo)] is an extrema if and only if f(zo) is an

extrema).

3. The reconstruction filters are simply zero-phase smoothing filters.

Nonlinear enhancement II: gradient filter.

After analyzing the Laplacian filter, a natural question is, “Are there any other possible
filters for G(w)?”. The possible candidates are limited by the constraint
G(w)K(w) =1 — ||H(w)||*. For the class of filters defined by Equation (1), we can derive

that N ”
G(w)K (w) = sin® (g) > [cos <;—j>} .

[=0
As a result, the only other meaningful choice of filter G(w) appears to be a gradient
operator
G(w) = 2je™7% sin <%> , or, g[0] =1,¢[1] = -1, (13)
such that g[i] * s[i] = s[f] — s[i — 1]. The reasoning comes from the fact that derivatives
higher than two have more than two local extrema for a soft edge. Therefore, nonlinear

enhancement of derivatives higher than two may produce additional edges (artifacts).
For the gradient filter G(w), we selected the filter

cw 2n+1
Hw)=¢>2 [cos (g)]
and accordingly

K(w) = —“G(w izn: [cos < >]2l

We then derived the forward filters
Fn(w) = G(@)27 Omanta(w) = Glw)Am(w)
and inverse filters
L(w) = =€ G(w)Tm (@),

where
2n

L, (w) — 2m@m,2n+2(w)i Z [COS <2m—1w>] 2]

=0
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is a low-pass filter.

In this case, the associated wavelet coefficients may be written as
w[n] = V™ {s[n] * An[n]}

where V™ is a discrete backward gradient operator characterized by
V=s[n] = s[n] — s[n —1].

Finally, the enhanced signal may be written as
N-1
3] = = 3 VH{E, [V (sln) # An[nl)| | yln] + s[n]  Awln] + v [n] (14)
=0

where V7 is a discrete forward gradient operator characterized by V*s[n] = s[n + 1] — s[n]
, corresponding to e/“G(w) in I, (w).

For the sake of discussing artifacts, let us consider the channel output of an enhanced
signal

VH{ B [V (smln])] } * 3]

where s,,[n] = s[n] * Ay [n] and 7,.[n] is a zero-phase low-pass filter. The suspicious part is
VH{E, [V (snln))]}

with its continuous counterpart being

%{E&%%@ﬂ}ZEBM@hM@=abM®bmw,

where az) = E'(z) can be seen as a gain for s/, (z). Note that gain « is based on s/, (z)
instead of s ().
The proof below shows that only a linear function E(z) = Gz (corresponding to

unsharp masking) can guarantee that positions of extrema of s () remain unchanged.

Proof. Let u(z) = o[f'(z)] f"(x), then v'(z) = o/(f")(f")* + a(f') f". At extrema
point g of f, f"(x0) = 0, thus w/(20) = & [f'(z0)] [f"(z0)]*. We consider a particular
signal of a soft edge, f(z) = 1/(1 + e~%%), for which f'(z) = S/ [2 coshQ(ﬁx)],

f"(z) = —p?sinh(Bz)/ cosh®(Bz) and f"(z) = —j3° [1 — 23inh2(ﬂ3})] / cosh*(Bz). Local
extrema points xo satisfy 1 — 2sinh?(Bzo) = 0, f'(z0) = B/3 and [f"(x0)]* = 4531/27. For
all 30, f'(zo) # 0 and [f"(20)]° # 0. Therefore, in order for u/(zo) = 0, the function
o (2) must satisfy o/ [f'(z0)] = &/(8/3) = 0,V5. That is a(z) = constant, or E(z) = Gz.

Change in position of extrema points may result in undesirable distortion or artifacts.

Figure 7 shows an example of shifting caused by a hyperbolic enhancement function
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(z) overlayed with s (z).

E(z) = A-tanh(Kz) with K = 100. For other nonlinear functions, new local extrema may
also be created.

Intuitively, the problem associated with the gradient filter is due to high-pass filtering
in reconstruction. The significance of this analytical result suggests that this nonlinear
approach may not be appropriate for other wavelet bases if their reconstruction (inverse)

involves high-pass filtering.

2.1.5 Noise-suppressed enhancement

A structure for combined denoising and enhancement

The nonlinear enhancement methods proposed previously did not take into account the
presence of noise. In general, noise exists in a digitized image, due to the imaging device
and quantization. As a result of nonlinear processing, noise may be amplified and may
diminish the benefits of an enhancement.

Unfortunately, denoising is a very difficult problem for two reasons. Fundamentally,
there is no absolute boundary to distinguish a feature from noise. Even if there are known
characteristics of a certain type of noise, it may be theoretically impossible to completely
separate the noise from features of interest. Therefore, most denoising methods may be
seen as ways to suppress very high frequency and incoherent components of an input signal.

A very simple method of denoising that is equivalent to low-pass filtering is naturally
included in our dyadic wavelet framework. That is, simply discard several channels of
highest resolution, and enhance channels confined to lower frequency. The problem
associated with this linear denoising approach is that edges are blurred significantly, and is
thus not suitable within a contrast enhancement scheme. Figure 10 (c) shows an example
of this approach. In order to achieve edge-preserved denoising, more sophisticated methods

based on a framework for wavelet analysis were proposed in the literature. Mallat and
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Hwang [27] connected noise behavior to singularities. Their algorithm was based on a
multiscale edge representation. The algorithm traced modulus wavelet maxima to evaluate
local Lipschitz exponents and deleted maxima points with a negative Lipschitz exponent.
Donoho [25] proposed nonlinear wavelet shrinkage. The algorithm shrinks wavelet
coefficients towards zero based on a level-dependent threshold.

The wavelet shrinkage method can be trivially incorporated into our nonlinear
enhancement framework by simply adding an extra segment to the enhancement function

E(z) of Equation (11).

r— (K -1)T,+ KT, ,if «<-T.

K(z+1T,) Vit —T.<z<-T,
E(z)=4 0 Vit |2 < T (15)
Kz —1T,) Vit T, <a<T.

z+ (K -1)T,— KT, ,if 2>T.

However, there are two arguments which favor shrinking gradient coefficients instead of
Laplacian coefficients.

First, gradient coefficients exhibit a higher signal to noise ratio (SNR). For any
shrinkage scheme to be effective, an essential property is that the magnitude of a signal’s
components be larger than that of existing noise (most of time). It is thus sensible to
define the SNR as the maximum magnitude of a signal over the maximum magnitude of
noise. For example, consider a soft edge model f(z) = A/(1 4+ e%%7), A > 0. Its first and
second derivatives are f'(z) = AB/ [2 coshz(ﬁx)] and f"(z) = —AB?sinh(Bz)/ cosh®(Bz),
with magnitude of local extrema |f'(zo)] = A|B|/3 and |f"(x0)| = 2AB%/3+/3, respectively.
By this simple model, we can reasonably assume that noise is characterized by relatively
small A value and large 3 value. Clearly that gradient coefficients have a higher SNR than
that of Laplacian coefficients because of less contribution of 8. Figures 8 (b) and (c) show
first and second derivatives, respectively, for an input signal (a) with two distinct edges.

Second, boundary contrast is not affected by shrinking gradient coefficients. As shown
in Figure 8, coefficients aligned to the boundary of edges are the local extrema in the case
of the first derivative (gradient), and zero crossings in the case of the second derivative
(Laplacian). For a simple point-wise shrinking operator, there is no way to distinguish the
B points from the A points. As a result, both regions around the B’s and A’s are shrunken,
and the discontinuity in B will sacrifice boundary contrast.

In the previous section, we argued that nonlinear enhancement should be performed on
Laplacian coefficients. Therefore, in order to incorporate denoising into our enhancement

algorithm, we need to split the Laplacian operator into two cascaded gradient operators.
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Figure 8: (a) Signal with two edges (b) 1st derivative (gradient).
(¢) 2nd derivative (Laplacian). (d) Shrunken 2nd derivative.

@ - Mg—» co0

Figure 9: Incorporating wavelet shrinkage into an enhancement framework (level one shown).

Note that

—jw/2 W jW/Z w 1 —
Gonl) = =t [sin (21 = { [ GG [P Gu(p)] L itm =0,
, otherwise.
where Gg(w) = 27 sin(w).
Denoising by wavelet shrinkage [25] can then be incorporated into this structure as

illustrated in Figure 9, where the shrinking operator can be written as

) T n ,if x| >1T,,
(o) = sign(a)-{ ¥ TR

Note that the shrinking operator is a piece-wise linear and monotonically non-decreasing
function. In practice, this will not introduce artifacts.

Finally, a denoised and enhanced signal can be written overall as

_ X::O jo {V+ [Cm (v— (s[n] * )\m[n])”} * Ym[n] + s[n] * An[n] * yn[n].
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Threshold estimation for denoising

The threshold T, is a critical parameter in the shrinking operation. For a white noise
model and orthogonal wavelet, Donoho [25] suggested a formula of T, = 1/2log(N)o/+/N,
where N is the length of a input signal and o is the standard deviation of wavelet
coefficients. However, the dyadic wavelet we applied is not an orthogonal wavelet.
Moreover, in our 2-D applications, a shrinking operation is applied to magnitudes of
gradient coefficients instead of wavelet coeflicients themselves. Therefore, the threshold
estimation method proposed in [28] for edge detection may be more suitable.

In our shrinking operation, the magnitudes of the gradient of a Gaussian low-passed
signal are modified. As pointed out in [28], for white Gaussian noise, the probability
distribution function of the magnitudes of gradient is characterized by the Rayleigh
distribution:

B (/M2 m >0,

P?“”Af“(ﬂl) =
0 ,m < 0.

To estimate 7, a histogram (probability) of |Af|l was computed, and then iterative curve

fitting was applied. Under this model, the probability p of noise removal for a particular

threshold 7 can be calculated [28] by

p= f(;— PT||Af||(ﬂl)dm
I’ Pr“AfH(m)dm’

and thus 7 = 1/=2In(1 — p) 5. For p = 0.999, 7 = 3.77.

Figure 10 compares different existing approaches. In (b), we observed that

enhancement without any denoising results in annoying background noise. In (c), edges
were smeared and broadened by low-pass-enhancement combination. Only in (d), with
wavelet shrinkage, we were able to achieve the remarkable result of denoising and contrast
enhancement simultaneously.

To demonstrate the denoising process, Figure 11 (a) and (b) shows both nonlinear
enhancement of wavelet coefficients without and with denoising, respectively, for the input
signal shown in Figure 10 (a). Figure 11 (¢) shows the curve-fitting for threshold

estimation.

2.1.6 Two dimensional extension

For image processing applications, the one dimensional structures discussed previously
were simply extended to two dimensions. We adopted the method proposed by Mallat [26],
shown in Figure 12, where filter L(w) = I—JrlﬂZ%, and H(w), K(w) and G(w) are the same

filters used in the 1-D case.
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Figure 10: (a) Noisy input signal (contaminated by white Gaussian noise).
(b) Nonlinear enhancement without denoising, Gy, = 10, N =4, ¢t = 0.1,
(c) Nonlinear enhancement of levels 2-3, G, = 10, ¢ = 0.1; levels 0-1 zeroed out;
(d) Nonlinear enhancement with adaptive wavelet shrinkage denoising, G, = 10, N =4, ¢ = 0.1.
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Figure 11: Column (a), Enhanced wavelet coeflicients without denoising.
Column (b), Enhanced wavelet coeflicients with adaptive thresholding T, = 4.5n.
Column (c), The magnitude distribution and curve-fitting.

(Row 1 through 4 corresponds to levels 1 to 4.)

Gle) : K(@)L(@y)
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B ] e T

Figure 12: Two dimensional dyadic wavelet transform (two levels shown).
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Figure 13: Denoising and enhancement for the 2-D case (level one shown).

However, experimental we observed that if we simply modify the two oriented wavelet
coefficients independently, we introduced orientation distortions. One way to avoid this
disastrous artifact is to apply a denoising operation on the magnitude of gradient
coeflicients, and apply a nonlinear enhancement operation on the sum of the Laplacian
coefficients, as shown below in Figure 13. For the two oriented gradient coefficients wz,
and wy,, the magnitude M and phase P were computed as M = \/wz? + wyi and
P = arctan(wy; /wx1), respectively. The denoising operation was then applied to M,
obtaining M’. The denoised coefficients were then simply restored as wz} = M’ * cos(P)
and wy; = M’ xsin(P), respectively. For the enhancement operation, notice that the sum
of two Laplacian components is isotropic. Therefore, we may compute the sum of the two
Laplacian components S = wxy + wy; and C' = wx,/S. A nonlinear enhancement operator
is then applied to only S, producing S’. Thus, the two restored components are
wah = 5" % C and wyy, = 5" * (1 — C).

2.1.7 Experimental results and comparisons

In this section, we present sample experimental results and compare them with existing
state-of-the-art techniques.

Figure 14 (a) shows a synthetic image with three circular “bumps” and added white
noise. The enhancement results shown in (b) and (c) demonstrate unwanted noise
amplification. Moreover, note that histogram equalization processing alters the object’s
boundary. However, the result shown in (d) accomplished by dyadic wavelet analysis
produces a clearer image without orientation distortion.

Figure 15 (a) shows an original dense mammogram image with a central mass. The
boundary of the mass in the the enhanced image was well defined and made clear
penetration of spicules into the mass.

To study the efficacy of our algorithm, we blended mathematical phantom features into
clinically proved cancer free mammograms. Figures 16 (a) and (b) show mathematical

phantom features blended into M48 and M56 (resulting in Figure 17 (a) and Figure 18
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Figure 14: (a) Noisy image (white Gaussian noise contaminated).
(b) Histogram equalized. (c) Nonlinear enhancement by Beghdadi and Negrate’s algorithm.
(d) Nonlinear enhancement with adaptive wavelet shrinkage denoising, Gy, = 20, N =4, ¢ =0.1.
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Fieure 13: (a) Oringinal mammogram image M73. (b)) Nonlinear enhancement with adaptive
wavelet shrinkage denoising. G, =20. N\ =5.1=0.1.

(a) (b)

Figure 16: (a) Phantom features blended into M43, (b) Phantom features blended into M56.




Figure 17: (a) Mammogram image M8 with blended phantom features. () Nonlinear enhancement
with adaptive wavelet shrinkage denoising. ¢, =20. N =5.1=0.1.

(a)

Figure 1x: {aj Mammogram image M56 with blended phantom features. (b) Nonlinear enhancement
with adaptive wavelet shrinkage denoising. &, =20. N =5.¢ = 0.1.



(a)), respectively.

Figure 17 (a) shows a dense mammogram with blended phantom features, and (b)
shows an image processed by our nonlinear method. The enhanced image delineates well
the boundary (uncompressed areas) of the breast and its structure. The phantom features
were also well enhanced. Figure 18 (a) shows a dense mammogram with blended phantom

features, and (b) shows the image enhanced.

2.1.8 Summary
We established connections between dyadic wavelet enhancement algorithms and
traditional unsharp masking. We proved that two cases of linear enhancement were
mathematically equivalent to traditional unsharp masking with Gaussian low-pass filtering.
We designed a methodology for nonlinear enhancement with a simple nonlinear function to
overcome the dynamic range requirement usually associated contrast enhancement of
digital radiographs. By careful selection of wavelet filters and enhancement function, we
showed that artifacts can be eliminated. An additional advantage of our simple
enhancement function is that it includes traditional unsharp masking as a subset. We
showed how an edge-preserved denoising stage (wavelet shrinkage) can be appropriately
incorporated into our contrast enhancement framework, and introduced a method for
adaptive threshold estimation. We showed how denoising and enhancement operations
should be carried out for two dimensional images to avoid orientation distortions.

Our future research plan shall include the systematic study of gain and threshold
parameters for the nonlinear enhancement. In addition, in the next year we shall seek
localized and complex nonlinear methods to improve the performance of our existing

algorithm.

2.2 XMam: An Image Editor for Mammography

2.2.1 Introduction

Recent estimates show that breast cancer is the most frequently diagnosed malignancy in
the United States, accounting among women for 32% of all cancers detected and 18% of all
cancer deaths [3]. Although mammography is widely recognized as the best method for the
detection of breast cancer, 10%-30% of women who have breast cancer and undergo
mammography have negative mammograms, and in approximately two-thirds of these
false-negative mammograms the radiologist failed to identify cancers that were visible upon
retrospective review of the radiographs [29]. In [30], Vyborny suggests that part of the
problem resides in human search performance, a conclusion he bases on the following
findings: (1) Lack of prior knowledge of the location of an abnormality decreases the

likelihood that it will be detected, (2) In chest radiography, a large portion of the image is
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not sampled by foveal vision during the radiologist’s visual search, an effect that is also
observed in mammography, although to a lesser extent because of the smaller size of the
images, and (3) In searching for lung nodules, observers exhibit longer visual dwell times
on a considerable portion of missed radiologic abnormalities than on normal areas, a
phenomenon that is significant enough to allow for computer-based visual aids to reduce
false-negative detections. Both [29] and [30] point out that replicated mammography
readings (by two radiologists or a radiologists and a technologists) may increase selectivity
and decrease the number of false-negative mammograms. One of the goals of
computer-aided diagnostic schemes is to aid the radiologist in the search for lesions by
indicating locations of suspicious abnormalities in mammograms.

When a suspicious region is detected, the radiologist must visually extract features
from the finding and then either decide whether the abnormality is malignant or benign, or
recommend additional screening, follow-up or biopsy. Although there are general guidelines
to differentiate benign from malignant breast lesions, a considerable number of lesions are
misclassified. For example, more than half of false-negative mammograms result from
decisions by radiologists that the finding is either normal or benign [30], while only
10%-20% of masses in patients referred for surgical breast biopsy are malignant [29]. In
[30], Vyborny suggests that part of the problem resides in the merging of multiple image
features to characterize abnormalities. Although general radiologist can accurately and
reproducibly extract individual image features of importance in mammography, they are
usually outperformed by experienced mammographers in combining multiple features into
a correct diagnosis [30]. One objective of computer-aided diagnostic schemes is to extract
and analyze the characteristics of lesions to aid the radiologist in their classification.

Fundamental to the success of a computer-aided diagnostic methodology is the
development of a large database of cases diagnosed as having signs of cancer based on
mammographic screening, and later confirmed or denied as positive by biopsy. This
database will serve as the ground truth for the development and verification of our
computer algorithms for the detection of breast cancer. In this section of our report we
describe the first version of a computer image editor that provides the necessary

functionality to compile such database of cases.

2.2.2 Functionality

XMam is a software tool that allows radiologist to interactively indicate on digitized
mammograms regions diagnosed as having signs of cancer. XMam’s user interface has been
designed to fit the needs of mammographic screening and consists of four image panels to

allow for the simultaneous display of the craniocaudal (CC) and mediolateral oblique
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(MLO) views of the left and right breasts (the four accepted views for breast cancer
screening in the United States). As shown in Figure 19, XMam’s interface is made up of
two top windows which logically group the images corresponding to the CC and MLO
views. These windows consist of left and right image panels equipped with vertical and
horizontal scrollbars. The CC window is the application’s main window and provides, in
addition to its two image panels, three pull-down menus and one radio-box. In overview,
XMam’s functionality is supported by three logical modules: (1) an image module, (2) a
data module and (3) a drawing module. In the next three sections we describe each of

these modules in detail.

Image module

The image module manages image retrieval and display operations. This module
provides a user with the necessary functionality for opening a patient’s image file and
displaying its contents in the corresponding windows. In the context of XMam, an image
file refers to the logical grouping of the four standard radiographs obtained from a single
mammographic screening. If for any reason, one or more images are missing from the
patient’s image file, the image module will leave blank the corresponding image panel(s).

A user may access the image module through the Open and Close buttons located in
the Image pull-down menu on XMam’s main window. The layout of this menu as well as
other pull-down menus is shown in Figure 20. A point-and-click operation on the Open
button of the Image pull-down menu pops up a File Image Dialog as the one shown in
Figure 21, and allows a user to retrieve a patient’s image file from the group of patients
listed in its directory. A user may close a patient’s image file either by opening a new file
from the File Image Dialog or with a point-and-click operation on the Close button of

the Image pull-down menu.

Data module

This module manages data update and retrieval operations. It provides a user with the
necessary functionality for loading and saving a complex data structure that indicates
which image regions were registered by a radiologist as having signs of cancer. A complete
description of this data structure is described in detail below.

A user may access the data module through the Load and Save buttons located in the
Data pull-down menu on XMam’s main window. A point-and-click operation on the Load
button of the Data pull-down menu pops up a Load Dialog, as shown in Figure 22(a), and
allows a user to retrieve a patient’s data structure. Similarly, a point-and-click operation

on the Save button of the Data pull-down menu pops up a Save Dialog as shown in
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19: XMam’s user interface: (a) CC window, (b) MLO window.
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Figure 20: XMam’s pull-down menus: (a) Image menu, (b) Data menu.

i1 lesdiuf dalshaseff10x1130/

Figure 21: XMam’s File Image Dialog.
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Figure 22: XMam’s File Data Dialogs: (a) Load Dialog, (b) Save Dialog.

Figure 22(b), and allows a user to store the data structure that contains the specific

regions indicated by a radiologist as having signs of cancer.

Drawing module

The drawing module manages the drawing operations of XMam. This module provides
a user with the necessary functionality for outlining image regions. This is accomplished
with the aid of a computer mouse by enclosing regions of interest with polygons.

Before describing in detail XMam’s drawing operations, we introduce some terminology
that will simplify our discussion. In XMam, an active polygon group refers to a group of
polygons on which a user is performing drawing operations. At any point in time there can
be at most one such group. In general, a polygon group becomes active when a user
performs a point-and-click operation on any of its polygons. A polygon that is being drawn
is considered as active and forms a polygon group on its own. Polygon groups with more
than one polygon are constructed by selecting several polygons and grouping them together
by a group operation. A polygon group can be viewed conceptually as an unordered tuple
of elements. Tuple elements may be single polygons or tuples themselves. This tuple

feature allows a user to impose a complex logical structure into a polygon group. As an




Figure 23: Outlining of a region of interest on XMam.

example, suppose that ¢ and b are two polygons enclosing regions of interests corresponding
to a single lesion visible on a given mammographic view, say the left craniocaudal (LCC).
Then, a and b can be grouped together on a single tuple (a, b) to indicate that they are
logically related. Also, suppose that ¢ is a polygon enclosing a region related to the same
lesion but visible on the complementary left mediolateral view (LMLO). To complete the
lesion’s description, polygon ¢ should be grouped with tuple (a,b) to yield a complex group
((a,b),c). An important advantage of this tuple structure is that image regions that belong
to the same lesion but that are visible on different views can be logically grouped together.
Notice that this information may be useful for algorithms that rely on the simultaneous
fusion of all four views for the detection of breast cancer. Another advantage of having
polygon groups is that when a user selects any polygon, all other polygons that form part
of its group become active. This provides immediate feedback as to which image regions
are logically related. In addition this functionality can later be used for training new
mammographers and technicians with previously diagnosed cases of breast cancer.

There are several drawing operations a user may engage at any given point in time.
The simplest operation is that of drawing a polygon. Figure 23 shows several of the steps
followed by a user to enclose a suspicious mass on a digitized mammogram. Recall that a
polygon that is being drawn is considered an active polygon group, a state that is denoted
in XMam by highlighting the vertices of the active polygons with square anchors. Figure
23 also shows that there are two classes of anchors in XMam, active and inactive. An
active anchor is displayed as a solid square and denotes a polygon vertex on which the user
may perform drawing operations. On the other hand, an inactive anchor is displayed as a
clear square and cannot be operated on until it is in the active state. At any point in time
there can be at most one active anchor within a polygon group. An anchor becomes active
when a user performs a point-and-click operation on it. When an anchor is active, a user
may adjust the anchor position, delete the anchor, or adjust the polygon position.

XMam provides four different mouse cursors to indicate its current state. We will refer
to these cursors as crosshair, arrow, dotbox, and fleur. A crosshair cursor indicates that a

user may start drawing a polygon at a given mouse position. If a user places the mouse
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cursor on top of any line segment of an inactive polygon, the cursor will change from a
drawing cursor to an arrow cursor to indicate that the user may select the inactive polygon
by a point-and-click operation. Similarly, if a user places the mouse cursor on top of any
line segment of an active polygon, the cursor will change from a drawing cursor to a dotbox
cursor to indicate that the user may add an additional anchor to the polygon at the
current mouse position. Also, if a user places the mouse cursor on top of any vertex of an
active polygon, the mouse cursor will change from a drawing cursor to a fleur cursor to
indicate that the user may adjust the anchor or polygon position by a point-and-click
operation. The operation to be performed depends on which mouse button is pressed
during the point-and-click operation. Adjustment of the anchor or polygon position may be
carried out until the user releases the mouse button. In addition, a user may delete an
active anchor by depressing the delete key.

Recall that there can be at most one active polygon group at any given time. We also
mentioned that a polygon group with more than one polygon can be constructed by
selecting several polygons and performing a group operation. Selecting a polygon makes it
active, therefore we needed a special operation to override the constraint that at most one
polygon group may be active at any point in time. This is accomplished in XMam by
depressing the shift key. Polygon groups selected while depressing the shift key become
active and can be grouped together by a group operation. If the group operation is not
performed and the shift key is released, then selecting a new polygon will make it active
and all other polygons inactive. _

XMam not only allows a user to select regions of interests but also provides the
functionality to classify them under five distinct lesion classes: (1) well-defined masses, (2)
ill-defined masses, (3) spiculated lesions, (4) architectural distortions and (5)
microcalcifications. Figure 24 shows a radio-box containing five radio-buttons, each
associated with a distinct lesion class. Through this menu, a user may define a class under
which any polygons drawn on the image panels are to be classified and displayed. In other
words, the lesion menu provides a window into the lesion space and allows the user to
display only those polygons that are related to a given lesion type. In the current version
of XMam, a user is only allowed to display at any given time polygons belonging to a single
lesion type. This limitation was imposed by our existing Sun workstation with 8-bit
frame-buffers. Although there exist several software solutions for the problem, our solution
is a hardware upgrade to a 24-bit frame-buffer. A temporary software solution was not
implemented because we anticipate to port XMam to a 24-bit frame-buffer platform in the
near future and determined that clouting (patching) the software with a partial solution

would be detrimental to the real-time performance of the tool.
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Figure 24: XMam’s lesion menu.

2.2.3 Data structure

This section describes the data structures used by XMam to support drawing and grouping
operations. As discussed above, a polygon group can be viewed as an unordered tuple of
elements, where tuple elements may be single polygons or tuples themselves. In order to
support this recursive structure, XMam represents a tuple by a linked list of cells, where
cells may point to single polygons or other linked lists. Cells that point to single polygons
are refered to as polygon cells, whereas cells that point to other linked lists are refered to
as group cells. Figure 25 shows an instance of each of these two cell types with their
corresponding data fields (the field used to identify the cell type was omitted for
simplicity.) For any given cell ¢, PPrevCell and PNextCell are pointers to the cells
preceding and succeeding ¢. For a polygon cell p, PArray serves as a pointer to an array
that sequentially lists the X and Y coordinates of the polygon associated with p, Panel
indicates the panel in which p’s polygon will be displayed (LCC,RCC,LMLO,RMLO), TOL
indicates the type of lesion p’s polygon belongs to (well-defined mass, ill-defined mass,
etc.), NPoints indicates the number of vertices of p’s polygon, and FPoint indicates the
index (if any) of the active anchor in p’s polygon. For a group cell g, PGFirst and PGLast
are pointers to the first and last cells, respectively, of the linked list associated with ¢’s
group. By including the Panel and TOL fields on each polygon cell we may create polygon
groups consisting of polygons from different panels and having different lesion types.
Although our current user interface only allows a user to form groups within a specific
lesion type, our data structure already supports grouping across different lesion types. This
additional grouping feature is provided in view of our plan to port XMam to a 24-bit
framebuffer platform and use colors to indicate the lesion type of a polygon.

To keep track of all polygon groups, XMam compiles them into a single linked list. This
list is accessed through a handle consisting of two fields, PFirst and PLast, that serve as
pointers to the first and last cells of the list, respectively. In Figure 26 we show how the list
handle, the polygon cells and the group cells are used together to represent the polygon
group ((a,b),c) described in the previous section. We will refer to this complex data
structure as the region structure. A more complex example consisting of two polygon
groups, (a,b,¢) and ((d,e),(f,¢)), is shown in Figure 27.

The region structure can be easily traversed by following the PNextCell pointers of its

linked list. Every time a group cell is found, it is recursively expanded and its underlying
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(a) (b)
Figure 25: (a) Polygon Cell, (b) Group Cell.

list traversed. An example of this operation occurs when a user changes the type of lesion
to be displayed and XMam traverses its region structure, clearing the polygons belonging
to the previous lesion type and drawing the polygons corresponding to the new lesion type.

In addition to the region structure, XMam uses an auxiliary structure called the group
structure to keep track of the active polygon group. Figure 28 shows an instance of the
group structure consisting of a list handle and four list cells. The LFirst and LLast fields
serve as pointers to the first and last cells of the list, respectively. Each list cell in turn
points to a polygon group selected by a user. This list usually consists of a single entry
pointing to the active polygon group but may contain several entries when a user selects
several polygon groups for a grouping operation. The other three fields in the list handle
function as different levels of addressing for the polygon that contains the active anchor.
The LCurr field points to the list cell that points to the polygon group that contains the
polygon cell with the active anchor. The PGCell field points to the group that directly
contains the polygon cell with the active anchor. And the PPCell field directly points to
the polygon cell that contains the active anchor. The reason for having these three distinct
pointers is justified below.

We clearly require a pointer to the polygon cell with the active anchor to support
possible edit, insert and delete operations. In addition, if a user deletes a polygon from a
polygon group consisting of two polygons, then the group cell becomes unnecessary and
needs to be deleted. The PGCell field provides efficient access to this cell. Similarly, if the
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polygon group containing the active anchor consists of a single polygon and a user deletes
this polygon, then the list cell becomes unnecessary and needs to be deleted. The LCurr
field provides efficient access to this cell.

Although XMam uses several other data structures, the region and group structures
described above comprise the major mechanisms used by XMam for managing drawing and
grouping operations. Even though these data structures fully support the functionality
described in the previous section, we anticipate that future versions of XMam shall yield

cleaner and more efficient data structures.

2.2.4 Hardware

In this section we briefly describe our current hardware platform. The development
environment for XMam is a dual-screen SPARCstation LX with 8-bit framebuffers, 64
Mbytes of memory and 320 MBytes of swap space. The platform currently runs Sun OS
4.1.3 and XWindows X11/R5, and includes the recently released Xvan server. This new
server allows us to treat both screens as a single logical device and to freely move (drag)

windows from one screen to the other.

2.2.5 Summary

We have described above the functionality and data structures of a computer image editor
that can be used by radiologists to indicate on digitized mammograms regions diagnosed as
probable cancer. This tool shall facilitate the compilation of a large database of diagnosed
cases to be used as ground truth for the development and verification of our computer
algorithms for the detection of breast cancer.

In the next year, XMam will progresively evolve into a state-of-the-art mammography
workstation as new software is developed and hardware improvements are incorporated

into our system.

2.3 Local Feature Analysis via Interval Wavelets
2.3.1 Introduction

This section of the report introduces a novel approach for accomplishing interactive feature
analysis by overcomplete multiresolution representations. Traditional wavelets adapted to
“life on an interval”, can overcome “edge effects” of wavelet representations on a line.
Methods of contrast enhancement are described based on two overcomplete multiresolution
representations (interval wavelets): (1) Deslauriers-Dubuc interpolation, (2) Average

interpolation.
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We show quantitatively that transform coeflicients, modified by an adaptive non-linear
operator, can make more obvious unseen or barely seen features of mammography without
requiring additional radiation.

Arbitrary regions of interest (ROI) of a mammogram are enhanced by average
interpolation (AI) and Deslauriers-Dubuc interpolation (DD) representations on an
interval. The results of local (ROI) enhancement and global enhancement of mammograms
are compared quantitatively. We demonstrate that our method can provide radiologists
with an interactive capability to support high-speed localized processing of selected
(suspicious) areas (lesions).

We demonstrate that features extracted from multiscale representations can provide an
adaptive mechanism for accomplishing local contrast enhancement. By improving the
visualization of breast pathology we can improve chances of early detection while requiring
less time to evaluate mammograms for most patients. In addition, we show that processing
can be carried out at real-time (video frame) rates over selected areas of arbitrary shape.

This is significant in consideration of the large image matrix size of digital mammograms.

2.3.2 Feature analysis via interval wavelets

In this section, we describe two multiresolution representations which were investigated:
average interpolating wavelet transform [31], Deslauriers-Dubuc interpolation [32, 33].
These representations are attractive because they overcome the edge effect of traditional
multiresolution representations (based on periodization of a finite signal to a signal on a
line, or simply adding zeros to extend a signal on a line, etc). The shape of the basis
functions for these representations are symmetric or antisymmetric, and allow for perfect
reconstruction. We have used these representations to decompose an arbitrary rectangle of
a mammogram, so that the rectangle may be analyzed independently.

Cohen and Daubechies [34] first adapted multiresolution analysis on the line to “life on
the interval”, where a sequence of successive approximation spaces on the interval were be
constructed as: Usez V; = L([0,1]), Njez V; = {0}. By defining W; as an orthogonal
complement of V; in Vi1, V;_y = V; @ Wj, the space L*([0,1]) can be represented as a
direct sum L3([0,1]) = @,z W;.

In the following two representations, the bases are compactly supported, but not

orthogonal. These representations are often called overcomplete redundant representations.

Deslauriers-Dubuc interpolation
This multiresolution representation consists of the Deslauriers-Dubuc fundamental

functions [32, 33]. Suppose D is an odd integer and D > 0, a fundamental function can be
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(c) (d)

Figure 29: (a) Refinement relation for Deslauriers-Dubuc interpolation. (b) DD wavelet plot,
D = 3. (c) Refinement relation for average interpolation. (d) Al wavelet plot,D = 2.

defined by interpolating the Kronecker sequence recursively: if F'p has been defined in the
set of By at dyadic rationals k/2° k € Z, then extend Fp to the set of

By, B,,...,B;,j € Z. Specifically, when the value of the function is defined at all the
dyadic rationals k/2’, k € Z, we extend the function by polynomial interpolation to all
dyadic rationals at k/2/*1 k € Z, this means extend the function to all the dyadic rationals
half way between the previously defined positions. When j — oo, Fp converges to a unique
continuous function on the real line. This function defines an (R, D) interpolating wavelet
for R = R(D), and is compactly supported. Figure 29 shows the fundamental solution of
DD interpolation and associated wavelets (D = 3).

Donoho [31] showed that given a (R, D) interpolating wavelet 1, we can construct an
interpolating wavelet transform, mapping the function f into approximation sequence sj, £,
and detail sequence dj, k, djo+1.k, djot2.65 "+ » djo+mos ™ € Zym — oo. The function f can
then be reconstructed from its coefficients,

F = Siokbiok+ O > dixthjk-
k izg0 k

By adapting the inhomogenous interpolating transform to “life on the interval”, we can
develop additional interpolating wavelet transforms for C[0,1]. Suppose that ¢; is a
scaling function on the line. The scaling functions on the interval g/);{}f”” are derived in the

following way: (1) in the interior of the interval, they are just the same as on the line

UL = Gjn, D<k<2—-D-1
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(2) on the edges of the interval, they are dilations of boundary adjusted functions:
ginery = P GI (D — k), 0< k<D,

gpintery 2j/2¢259ht(2fx — 9 ) — 1), 0<kE<D.

3,29 —k—1 —

Thus for the spaces V;[0,1] we have the functions:

| it 0<k<D
g =3 @i D<k<2-D-1
gt 21 —D—1< k<Y

in the same way, we can define the wavelets on the interval for the detail spaces W;[0,1]:

| it 0< k< |Df2|
i = ik D/2) Sk <2 —[D/2]
I 2 — | DJ2f <k <2

Thus the function f € V;41[0,1] can be written as

271 291

int int
f — Z Sj,kﬁb;?kemj + kz: dj,k ;&erv.
k=0 =0

Average interpolating wavelet transform

Donoho [31] showed that connected with Deslauriers-Dubuc interpolation, there exists
an average interpolating wavelet transform. Let D be an even integer and D > 0, starting
from the Kronecker sequence ao ), = 60, k € Z, we synthesize the averages (a;r),,7 € 4+,
the sequence Ajp = > ; @j k127 (k+1)/27)(t) shall converge uniformly to a fundamental
solution of the interpolating scheme Ap, and has compact support. Figure 30 shows the
refinement relation and its associated wavelets with D = 2, 4.

A(t) may be written as

Alt) =) aoxAp(t — k).
k

Thus the average interpolating wavelet transform is closely related with Deslauriers-Dubuc
interpolation. Let D > 2 be an even integer, and let ¢ = Ap be the fundamental solution
of the average interpolation, and ¢PP = Fppy; (where “DD” represents Deslauriers-Dubuc
interpolation ) be a fundamental solution of the Deslauriers-Dubuc interpolation. Let ¢ be
the AT ( where “Al” represents the average interpolation ) wavelet, and let PP be the DD

wavelet. Then there exists a relation:

d
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Figure 30: Scaling functions and associated Al wavelets.

D=4

d
Ple) = —VI5 PP (2w~ 1/2)
as shown in Figure 29. If the ¢ and ¢ are associated with the average interpolation, we can

expand the function f € V}; into a sequence of coefficients at coarse scale in the spaces

V., Jo < j1, and a series of details:

f Zsyokém,k‘i‘ Z Zd]k’@/)]k

Jo<i<n k

By adapting the inhomogenous interpolating transform on an interval”, interpolating
wavelet transforms for L![0,1] can be constructed. For the spaces V;[0, 1] we have the

functions:

piner = ¢J, D<k<2-D-1
Gt 2 —D—1<k<2.

in the same way, we can define the wavelets on the interval for the detail spaces W;[0, 1]:

| Pt 0<k<D/2
Yty = & p D/2< k< —D/2
I 21— D2 < k<20

Thus the function f € V;41[0,1] can be written as

27-1 27-1

f — Z Sik mterv + Z d] M’Z;mterv.
k=0

Figure 31 shows plots of an Al refinement relation and its associated wavelets on the

interval.
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Selected a ROI

column

(b) (¢)

Figure 32: (a) Decomposition and enhancement tree structure for one dimensional case. H
and G are a filter pairs. E is a nonlinear operator for enhancement. (b) Selected ROI within
a mammogram, (c¢) ROI is processed based on tensor product: each row is processed first,
followed by the processing of each column.
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Implementation

Figure 32(a) shows the one dimensional case of a tree structure analysis filter bank,
used to implement the above transformations. After decomposition of an original signal,
enhancement (defined by E) is applied to wavelet coefficients. The enhanced signal is then
obtained by reconstructing the signal from the modified coeflicients. By extending the
processing for the one dimensional case to two dimensions, we were able to enhance features
of mammography by using the average interpolation and Deslauriers-Dubuc interpolation
wavelet transforms. For processing of an arbitrary region in a mammogram, we used a
scanline based method: First, the rows of a selected ROI were scanned and processed, then

the colunms. Figures 32(b) and (c) illustrates the processing steps graphically.

Enhancement techniques

To accomplish multiscale contrast enhancement, non-linear techniques for image
enhancement are applied to the multiresolution representations. In our case, there are four
components in the transform space: horizontal, vertical, diagonal, and DC component,
represented by A%, 0%, d', ¢ respectively, where 7 is the level of a transform. Let z be the
original mammogram, f be the function designed to emphasize features of importance
within a selected level ¢, L be the total level of transform. Then the enhanced image may

be given by

&= ZW_l(f(hi),f(vi),f(d"%ci)- (17)

In general, by defining function g, we can denote specific enhancement schemes for
modifying the coefficients within distinct levels of scale-space.

There are three ways of enhancement techniques: local enhancement technique based
on multiscale edges, global enhancement techniques of multiscale histogram equalization

and multiscale adaptive gain processing

Experimental results and discussion

Preliminary results have shown that the multiscale processing techniques described
above can make more obvious unseen or barely seen features of a mammogram without
requiring additional radiation. Our study suggests that the analyzing functions presented
in this paper can improve the visualization of features of importance to mammography and
assist the radiologist in the early detection of breast cancer.

Figure 33(a) shows a “dense” mammogram. This class of mammogram is more typical
in younger females due to the greater absorption of X-ray energy by less fatty tissues in the

breast. They remain particularly difficult to diagnose due to lack of contrast, even for
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radiologists specializing in mammography. Figure 33(c) shows the result of global wavelet
processing for four levels of analysis. In this case, the values of transform coefficients
within each level of a decomposition (excluding the DC cap) were modified by histogram
equalization independently. Since the coefficients are space-frequency representations,
contrast modifications on the transform side are preserved in part on the spatial side.
Similar contrast gains were observed for additional dense radiographs. Figure 33(b)
displays the result of standard histogram equalization. Unfortunately, the dense tissues of
the breast image are “washed out” in Figure 33(b).

Mathematical models of phantoms were constructed to validate our enhancement
techniques against false positives arising from possible artifacts introduced by the analyzing
functions and to compare our methods against traditional image processing techniques of
improving contrast. Our models included features of regular and irregular shapes and sizes
of interest in mammographic imaging, such as microcalcifications, cylindrical and spicular
objects, and conventional masses. Techniques for blending a normal mammogram with the
images of mathematical models were developed. The purpose of these experiments was to
test the performance of our processing techniques on inputs known a priori using
mamimograms where the objects of interest were deliberately obscured by normal breast
tissues. The imaging justification for blending is readily apparent; a cancer is visible in a
mammogram because of its (slightly) higher X-ray attenuation which causes a lower
radiation exposure on the film in the appropriate region of a projected image.

Figure 34(b) shows an example of a mammogram whereby the mathematical phantom
shown in Figure 34(c) has been blended into a clinically-proven, cancer-free mammogram.
The blended image was shown in Figure 36(a), it was constructed by adding the amplitude
of the mathematical phantom image in Figure 34(c) to the cancer free mammogram in
Figure 34(b) followed by local smoothing of the combined image.

Radiologists at Shands Hospital at the University of Florida validated that processing
the blended mammogram with our local enhancement techniques introduced no significant
artifacts and preserved the shapes of the known mammographic features (calcifications,
dominant masses, and spicular lesions) contained in the original mathematical phantom.

A quantitative measure of contrast improvement can be defined by a Contrast

Improvement Index (CII),
( C’Processed
Cll = —,
C(Original
where Cprocessed and Coyiginal are the contrasts for a region of interest in the processed and
original images, respectively.

In this study we adopt a version of the optical definition of contrast introduced by
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Figure 33: (a) Original dense mammogram, M56. (b) Enhancement by traditional histogram
equalization. (c) Global enhancement by adaptive histogram equalization of Deslauriers-
Dubuc interpolation (DD).
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Figure 34: (a) Contrast enhancement by adaptive gain processing of DD interpolation
wavelets. (b) Original dense mammogram, M56. (c) Mathematical phantom.

Table 1: Contrast values for enhancement by local enhancement by multiscale edges obtained
from average interpolation (ATI), Deslauriers-Dubuc interpolation (DD).

Contrast values for local enhancement techniques
Feature ‘ COriginal ‘ Car | Cbp
Minute microcalcification cluster | 0.0498 | 0.1697 | 0.1833
Microcalcification cluster 0.0324 | 0.0733 | 0.1040
Spicular lesions 0.0272 | 0.0728 | 0.0836
Circular (arterial) calcification 0.0378 | 0.1060 | 0.1242
Well-circumscribed mass 0.0032 | 0.0046 | 0.0051
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Fieure 35: Blended mammogram: (a) Global enhancement by DD gain. (b) Local enhancement by
DD edges. (c) Enhancement of rectangular regions by DD gain. (d) Enhancement of rectangular
regions by DD edge processing.




Table 2: CII for enhancement by local enhancement by multiscale edges obtained from
average interpolation (AI),Deslauriers-Dubuc interpolation (DD).

Contrast Improvement Index (CII) for local enhancement techniques
Feature | CHAI l CHDD
Minute microcalcification cluster | 3.4051 3.6773
Microcalcification cluster 2.2605 3.2061
Spicular lesions 2.6756 3.0728
Circular (arterial) calcification | 2.8012 3.2828
Well-circumscribed mass 1.4364 1.6024

Morrow et al [35]. The contrast C' of an object is defined by

F—b

C=—
f+b

where f is the mean gray-level value of a particular object in the image, called the
foreground, and b is the mean gray-level value of a surrounding region called the
background. This definition of contrast has the advantage of being independent of the
actual range of gray levels in the image. With the aid of the mathematical phantom we
computed local masks to separate the foreground and background regions of each feature
included in the blended mammogram.

Figure 36(a) shows original M56 (a blended mammogram). Figure 35(a) was obtained
by global enhancement of adaptive gain processing of Deslauriers-Dubuc interpolation.
Figure 34(a) shows enlarged areas containing each feature in the processed mammogram
for adaptive gain of DD interpolation of contrast enhancement. For comparison of contrast,
features within Figures 36(a) and 35(a) were rescaled collectively.

Figure 35(a), (b) showed enhancement of the entire mammogram, and Figure 35(c), (d)
showed enhancement of the five pre-known features within the five small rectangles.
Because the arbitrary rectangles enhancement can adaptively select parameters according
to different features, it is more flexible than the enhancement scheme of treating all the
features with the same enhancement parameters, thus enable us to enhance the features
more effectively while reducing the enhancement of noise. Figure 36 shows the
enhancement of an arbitrary region of interest (ROI) using adaptive gain processing of DD
interpolation on an interval.

By constraining the enhancement to only the interest region, computation is greatly
reduced. Table 3 shows the comparison of actual computation time of processing the entire

mammogram vs only the selected ROL
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Figure 36: Blended mammogram: (a) Original mammogram blended with mathematical phantom.
ibi ROI enhancement by adaptive gain processing of DD interpolation wavelet transform.




Table 3: Comparison of computation time. TEntire—mammogram represents the time to process
a complete image matrix, while Tros represents the time to process only a selected ROIL. The
number of pixels within the ROI shown in Figure 12 was 76,267 (executing on Sun Sparc
station 10/30).

Computation time (in seconds) comparison of whole mammogram vs ROI

Matrix size (number of PiXelS) l TEntire—mammogTam 1 TROI ’ TEntire—mammogram/TROI
512x512 748 135 5.54
1024x1024 5760 135 42.67

2.3.3 Auto-correlation shell representations

This section introduces another approach for accomplishing mammographic feature
analysis by an overcomplete multiresolution representation: auto-correlation shell
representation of compactly supported wavelets. We show that an arbitrary region of
interest (ROI) of the mammogram can be enhanced using the auto-correlation shell. The
ROI enhancement provides the radiologists a way to view the mammogram with only the

ROI enhanced on the screen.

Analytical formulation for auto-correlation shells

In this section, we have investigated auto-correlation functions of Daubechies’s
-.compactly supported wavelets [36]. This representation is attractive because the shape of
the basis functions for this representation are symmetric, and allow for perfect
reconstruction. We have used this representation to decompose an arbitrary region of
interest (ROI) within a mammogram, so that the ROI may be analyzed independently.

Since the coeflicients of orthogonal wavelet expansions are not shift invariant in general,
it can be quite difficult to explore the property of features from scale to scale. The
asymmetric shape of compactly supported wavelets, makes these wavelets poor edge
detectors, and can introduce artifacts when image enhancement is based on wavelet
coefficients alone. However the compact support characteristic of these bases make them
exact both in decomposition and reconstruction. The auto-correlation shell basis function
has the same support width of its associated compactly supported wavelets.

To overcome the drawbacks of compactly supported orthogonal wavelets in the
application of image analysis, Saito and Beylkin [36] introduced the notion of an
auto-correlation shell . Let ¢(z) be some compactly supported wavelet, and ¢(z) be the
scaling function. By definition of auto-correlation, we can write

o) = [ ooty —ady, W)= [ By - 2y

—00 —00
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where their respective Fourier transforms are

) =100F, O =1

Both W(x) and W(z) are supported within the interval [—~L 4 1, L 4 1}, where L is the
length of the quadrature mirror filter of a compactly supported orthogonal wavelet, and
W(z) and ¥(z) are symmetric. Figure 38 and Figure 39 show the analyzing filters of the
auto-correlation shell and Daubechies’s wavelet with two vanishing moments.

The functions ¥(z) may be viewed as a pseudo-differential operator, this allow us to
locate the edges of a signal at different scales of auto-correlation expansions. From Figure
40, we can see that the auto-correlation functions ®(z) and ¥(x) are smoother than the
functions ¢(z) and ¥(z), and @({) and lif(f) decay faster than qg(ﬁ) and 1&({), respectively.
The auto-correlated shell basis function of Daubechies’s compactly supported wavelets with
N = 2 are shown in figure 37.

Let {h}_r+1<r<r-1 be the low pass filter related with ®(z), and let {gr}-r+1<p<r—1 be
the high pass filter related to ¥(z). We have implemented a pyramid algorithm for

expanding a function f into an auto-correlation shell:

L-1

fj,k: Z hlfj—l,k+2i—1z
[=—L+41
L—1

dig =Y aficips2-11-
=—L+1

Reconstruction is accomplished by

Fion = %(sk +dy).

2.3.4 Summary

In this study, methods for accomplishing adaptive contrast enhancement by multiscale
representations were further investigated. Contrast enhancement was applied to features of
specific interest to mammography including masses, spicules and microcalcifications.
Multiresolution representations provided an adaptive mechanism for the local emphasis of
such features blended into digitized mammograms. Average interpolation and
Deslauriers-Dubuc interpolation representations on an interval enabled us to enhance
arbitrary regions of interest within a mammogram. The enhancement of ROI’s provides the
radiologists an interactive way of processing only an interesting suspicious region of a

mammogram, while reducing the computational cost compared to processing an entire
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Figure 37: Plots of auto-correlation functions of Daubechies’s compactly supported wavelet

with L = 4. (a) ®(z), (b) U(z).
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Figure 38: Analyzing filters for auto-correlation shell of Daubechies’s compactly support
wavelets with two vanishing moments (three levels of analysis shown).
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Figure 39: Analyzing filters for Daubechies’s compactly supported wavelets with two van-
g yzing p

ishing moments (three levels of analysis shown).
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Figure 40: 1-D signal expanded with an auto-correlation shell. The locations of the
edges in the original signal Sy correspond to the zero-crossings in the detail information

Dy, Dy, D3, Dy .
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mammogram. In addition, the representation of an auto-correlation shell was studied. This
representation can also be used to enhance mammographic features over an arbitrary
region. These initial results are encouraging and suggest that wavelet based image
processing algorithms could play an important role in improving the imaging performance

of digital mammography.

2.4 Quantitative Evaluation of Clinical Images
2.4.1 Introduction

This part of the report relates to the development of objective ways to assess the
performance of wavelet image processing algorithms. The objective is to develop techniques
to evaluate wavelet algorithms so they can then be optimized for clinical use in
mammography.

Substantial progress has been made in the development of techniques to assist in the
quantitative evaluation of wavelet based image processing algorithms. In addition, these
techniques have been applied to optimize the three parameters available in current wavelet

based algorithms. Specific achievements in the past year include:

e a demonstration of the ability of optimized wavelet based algorithms to make visible

simple objects in a noisy background which were previously invisible;

o a demonstration of the inherent superiority of wavelet based algorithms for the
detection of simple objects as compared to algorithms frequently used in medical

imaging including unsharp mask enhancement and median filtering;

e a demonstration of the special requirements of wavelet algorithms when enhancing
the visibility of features of specific interest in mammography, namely

microcalcifications, masses and fibril structures.

2.4.2 Specific projects completed

1. Image quality index. Computer simulated phantoms are an attractive choice for
evaluation of image processing algorithms since the features of interest are known and
well quantified. We developed a metric of the improvement in image Signal to Noise
Ratio (SNR) and used an Enhancement Factor (EF = SNR,/SNR;) where the
subscripts o and i refer to the processed image and original image, respectively. We
validated that there was an excellent correlation between the computed EF and

observer performance in psychophysics tests (see reference 1 in section 2.5).
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2. Optimization of wavelet algorithms. Three separate wavelet basis functions were
investigated (i.e. dyadic, hexagonal and phi). Each algorithm has three parameters
(Level [L], Threshold [T}, and Gain [G]) which may be varied. The effects of these
three parameters on all three wavelet basis functions were systematically investigated

for simple structures (e.g. Gaussian signals) embedded in white (Gaussian) noise.

This work concluded that the three parameters have similar effects irrespective of the
selected wavelet basis. In addition, the study demonstrated that wavelet based
algorithms are generally not linear and that significant improvements in SNR can be
achieved with optimized values of the parameters L, T and G. Another encouraging
finding was that the false positive rate was generally very low provided that the gain

parameter was not set too high (see references 1, 3, 6 and 9 in section 2.5).

3. Size and shape factors. Two important variables for the objects of interest in
mammograms are object shape and object size. This is of particular relevance given

the inherent multiscale capabilities of wavelet signal decomposition.

The importance of shape was systematically investigated and published (see reference
3 in section 2.5) and a paper describing in detail the significance of shape will be
presented at the forthcoming SPIE meeting in San Diego in February 1995 (see
reference 6 in section 2.5). In general, the size of a feature of interest is more
important than its specific shape. Furthermore, it is possible to optimize wavelet

algorithms for any selected feature size.

4. Mammographic features. The specific objects of interest in mammograms are masses,
microcalcification clusters and fibrils. The ability of wavelet based algorithms to
enhance these features were investigated using both computer simulated phantoms,
and physical phantoms radiographed using a screen/film combination designed for

mammography and subsequently digitized to permit image processing.

Results of these investigations have been published for both phantom images (see
references 4 and 9) and for radiographs of the American College of Radiology (ACR)
accreditation phantom (see reference 2 in section 2.5). These studies showed that the
differing types of features investigated would benefit significantly from specially

tailored algorithms.

5. Clinical applications. In addition to the phantom studies, we have performed
investigations into the effectiveness of digitized clinical mammograms. These studies
have generally shown that the trends identified with computer simulated physical
phantoms and with radiographs of the ACR phantom are similar to those found with
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clinical mammograms. The most promising wavelet basis identified by all three
approaches is the dyadic basis. The enhancement strategy that shows the most
promise is an Edge enhancement where it is only the wavelet maxima at a selected
scale which are enhanced by a gain factor. Two alternative wavelet coefficient
enhancement strategies investigated (Gain and Histogram Equalization) were
generally found to be inferior to Edge enhancement. Full details of these results are

available in the published papers (see references 2, 7 and 8).

2.4.3 Current projects

1. Image display. We are currently investigating ways of presenting digital
mamimographic images on soft copy displays. This issue is difficult because of the
large matrix sizes and the number of bits used to code for any individual pixel. Our
preliminary results were presented at the SPIE meeting on Medical Imaging in San

Diego in February 1994 (see reference 5 in section 2.5).

2. Digital x-ray images (LoRad system). A recently installed LoRad biopsy device
incorporates a small field of view high resolution (10242) digital imaging device. The
clinical use of this system is to permit needle core biopsies to be obtained. We are
currently using this system to radiograph images of the ACR phantom and also using

clinical images. (see reference 5 in section 2.5).

3. Structured background. There are two major sources of noise in mammograms. The
first arises from quantum mottle and film granularity, and this type of noise may be
simulated using the computer generated phantom images as described above. A
second source of "noise” is the structure patterns in mammograms. A major thrust of
the work being planned is to investigate how a structured mammographic background
affects the visibility of features which identify cancers (masses, microcalcifications
and fibrils). In addition, the ability of wavelet based algorithms to improve feature
visibility will be investigated. Of particular importance is whether algorithms

optimized for random Gaussian noise are also optimized for structured background.

4. Digital mammogram databases

We have purchased a Mammographic database from the Mammographic Image
Analysis Society in England with consists of 322 images digitized with a 50
micrometer spots size. In addition, we are in the process of digitizing a collection of
biopsy proven cases from the University of Florida to use for evaluation in our studies

of wavelet analysis.
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. Wavelet compression

We are in the process of developing methods for applying wavelet and jpeg
compression to mammograms with the intention of evaluating both methods for the
best compression method for these large image files. Receiver Operator
Characteristic (ROC) analysis as well as forced choice analysis will be carried out to

determine the best method and the limits of compression.

Sampling images for display

We are beginning the investigation of subsampling methods for reducing image
matrix size for digital mammographic images. We will evaluate methods using
Receiver Operating Characteristics and forced choice analysis as well as physical
measurements to determine the best clinical way to subsample as well as to develop

methods for correlating physical measurements with clinical accuracy.

Mammography database

We are updating the mammography database to meet the American College of

Radiology’s new rules for outcomes reporting.

Published journal papers and conference proceedings

. Xing Y, Huda W, Laine A, Fan J ”Simulated phantom images for optimizing wavelet

based image processing algorithms in mammography” Proceedings of the SPIE, San

Diego, 25-26 July 1994, Volume 2299 207-217.

. Qu G, Huda W, Laine A, Steinbach BG, Honeyman JC ”Use of accreditation

phantoms and clinical images to evaluate mammography image processing
algorithms” In Digital Mammography, Editors AG Gale et al, Elsevier Science BV;
Amsterdam (1994) 345- 354.

Jing 7, Zheng Y, Huda W, Laine A and Fan J "Mathematical models for quantitative
evaluation of wavelet based image processing algorithms” Proceedings of the SPIE,

San Diego, 25-26 July 1994, SPIE Volume 2303 569-578.

Laine A, Schuler S, Fan J and Huda W ”Mammographic feature enhancement by
multiscale analysis”, IEEE Transactions on Medical Imaging, Vol. 13, No.4,
December, 1994.
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Honeyman JC, Chen D, Huda W and Steinbach BG "Impact of image display
parameters on the visibility of microcalcifications and masses” Submitted to the

SPIE.

Huda W, Xing Y, Lain A, Fan J, Steinbach BG and Honeyman JC ” Assessment of a

wavelet image processing algorithm for mammography” Submitted to SPIE.

Steinbach BG, Laine A, Huda W and Honeyman JC ”"Mammography image

enhancement by using wavelet transforms” Submitted to RadioGraphics.

Laine A, Huda W, Steinbach BG and Honeyman JC "Mammographic image

processing using wavelet processing techniques” submitted to European Radiology.

Xing Y, Huda W, Laine A and Fan J ”Optimization of a dyadic wavelet for

mammography” In preparation for submission to IEEE Transactions on Medical

Imaging.

Published abstracts and presentations

Title: Use of phantoms and clinical images to evaluate wavelet based image

processing algorithms in mammography.
Authors: G Qu, W Huda, A Laine, BG Steinbach and JC Honeyman.

Presented at the 1994 American Association of Physicists in Medicine (AAPM)

meeting in Anaheim, CA

Abstract: Wavelet based image processing algorithms have been proposed to enhance
clinically important features in mammograms. In this study, images of an ACR
mammographic phantom and clinical images were both used to evaluate the
subjective improvement of image quality. Readers were asked to compare the
visibility of masses, spicules and microcalcifications of images processed using nine
different wavelet algorithms. The visibility rankings ranged from a value of 1
(markedly less than the original) to 5 (markedly better than the original). For the
ACR phantom images, a wide range of positive and negative rankings were obtained
suggesting that algorithms could be very good or very bad. For clinical images,
however, most rankings tended to correspond to the mean value. The advantages and

limitations of each phantom will be discussed.
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2. Title: Investigation of wavelet based image processing algorithms for use in

mammography
Authors: Y Zheng, Y Xing, W Huda and A Laine.

Presented at the 1994 American Association of Physicists in Medicine (AAPM)

meeting in Anaheim, CA

Abstract: It is important to optimize image processing algorithms prior to subjecting
them to clinical evaluation. In this study, computer simulated phantoms were used to
systematically investigate the parameters of wavelet image processing algorithms.
These included the hierarchical decomposition level, wavelet coefficient thresholds
and enhancement gain values [Laine et al, SPIE Volume 1905 (1993) 521-532)].
Image processing algorithms designed for use in mammography were applied to these
computer generated images and the input/output SNR values determined as a
function of each parameter. This methodology permits the identification of promising
wavelet parameters which could permit mammograms to be processed to improve the

visibility of features such as masses, spiculations and microcalcifications.

3. Title: Assessment of contrast enhancement for wavelet based mammography image

processing algorithms.
Authors: W Huda, A Laine, JC Honeyman, BG Steinbach.

Presented at the 1994 Canadian Organization of Medical Physics (COMP) meeting in

Toronto

Abstract: Wavelet based image enhancement algorithms have been proposed for use
in mammography to improve visibility of clinically important features. In this study,
three wavelet based algorithms were evaluated for their ability to enhance the
visibility of masses, spicular lesions and microcalcifications which had been
mathematically blended into digitized clinical mammograms. The results were
compared with a competitive local enhancement (unsharp masking) algorithm.
Contrast Improvement Indices (CIls) were obtained by measuring the ratio of
contrast in the processed image to that of the original image. For the wavelet
algorithms investigated, CII values were in the range 1.9 to 4.5 for the three types of
added mammographic feature. The corresponding CII values for the unsharp mask
algorithm, however, were in the range 1.1 to 1.8. The results of this study indicate

that wavelet based image processing algorithms could be useful for enhancing clinical

mMamimograrns.




4. Title: Mammography image enhancement using wavelet transforms.
Authors: BG Steinbach, A Laine, JC Honeyman, W Huda.
Presented at the meeting of the American Rontgen Ray Society

Abstract: We present a novel approach for accomplishing mammographic feature
analysis utilizing wavelet transforms. Identification of image features at different
scales permits selected attributes in a mammogram to be enhanced. Using digitized
mammograms, wavelet transform algorithms were evaluated in several cases of biopsy
proven breast carcinomas. Spiculated and well defined masses of varying degrees of
subtlety were processed using image processing algorithms based on multiscale
wavelet transforms. For comparison purposes, these images were also processed using

traditional histogram equalization.

Mammograms processed with algorithms based on the wavelet transform showed
some improvements in feature visualization. This Wavelet Transform method has the
potential to significantly improve the visibility of clinically important features (i.e.

masses, spicules & microcalcifications) and merits further investigation.

5. Title: Assessment of a wavelet image processing algorithm for mammography.
Authors: W Huda, Y Xing, A Laine, J Fan, BG Steinbach, JC Honeyman.

Submitted to: Image Processing, Murray H Loew, at M195 Medical Imaging 1995, 26
February - 2 March 1995, San Diego

Purpose: Image processing algorithms based on the wavelet transform has been
proposed to improve the visibility of mammographic features. In this study, a
computer simulated phantom was used to optimize a dyadic wavelet algorithm. The
degree of image enhancement achieved with this algorithm was compared with

algorithms currently used in diagnostic radiology.

Method: A computer simulated phantom was generated which contained masses,
fibrils and microcalcifications together with added random noise. Image improvement
was determined from the ratio of output to input signal to noise ratios. Performance
of the following three algorithms was investigated: 1) dyadic wavelet transform; 2)

unsharp masking; 3) median filtering.

Results: Each algorithm has several free parameters which may be altered and affect
the degree of image enhancement achieved. The properties of these parameters for

each algorithm were studied. Optimal parameters for these algorithms were found to
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depend on the type of mammographic feature being studied.

Conclusions: The results obtained show that a multiresolution approach to
mammographic image processing using a dyadic wavelet transform is generally a

more powerful tool than those offered by traditional image processing algorithms.

. Title: Impact of image display parameters on the visibility of microcalcifications and

masses.
Authors: JC Honeyman, D Chen, W Huda, BG Steinbach.

Submitted to: Image Display, Yongmin Kim, at M195 Medical Imaging 1995, 26
February - 2 March 1995, San Diego

Purpose: High resolution digital mammography systems are likely to appear in
clinical practice in the near future. Digital image data will permit the manner in
which mammograms are displayed to be readily modified. In this study, the
importance of display parameters on mammography feature conspicuity was

evaluated using images printed on film and displayed on diagnostic workstations.

Method: Clinical mammographic images, 5 x 5 cm in size, were obtained from a
LoRad Digital Spot Mammography system. The image matrix size was 5122 with a
pixel dimension of about 100 em. Ten images had microcalcifications and ten images
had masses. For each image, nine copies were made with differing window and level
settings which were printed on film and displayed on a monitor. Five radiologists
specializing in mammography ranked conspicuity of each mammographic feature from

the least visible to the most visible in a 9 forced choice experiment.

Results: The characteristic curves for transforming image pixel intensity to optical
density (film) and image monitor intensity (workstations) were obtained. The
significance of window and level on the perceived visibility of mammographic features
were determined. There are differences between small high contrast features such as
mammographic calcifications and larger low contrast features such as malignant
masses. The relative ranking of the conspicuity of mammographic features, however,

were generally similar for both film and workstation displays.

Conclusions: The data obtained quantify the significance of image display parameters
for improving the conspicuity of mammographic features. These results will permit

the optimization for printing films from digital mammography data and assist in the

design of display workstations for use in mammography.




2.7 Lectures and invited talks

1.

Andrew Laine, International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBS), November 1-2, 1994, Baltimore, MD, Invited speaker.

Andrew Laine, Yale University, Department of Mathematics, Colloquium guest

speaker, April, 1994.

Andrew Laine, University of Chicago, Departments of Computer Science and

Radiology, Invited lectures, Colloquium speaker, January, 1994.
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3 Conclusions

During the past year, we have made significant progress in the development of a
methodology for accomplishing adaptive contrast enhancement by multiscale
representations. Our studies have demonstrated that features extracted from
multiresolution representations can provide an adaptive mechanism for the local emphasis
of salient and subtle features of importance to mammography. The improved contrast of
mammographic features make these techniques appealing for computed aided diagnosis
(CAD) and screening mammography. Screening mammography examinations are certain to
grow substantially in the next few years, and analytic methods that can assist general
radiologists in reading mammograms shall be of great importance.

In the paragraphs below, we summarize our progress and identify future directions of
research to be carried out during the next year of our investigation.

We have established connections between dyadic wavelet enhancement algorithms and
traditional unsharp masking. We proved that two cases of linear enhancement were
mathematically equivalent to traditional unsharp masking with Gaussian low-pass filtering.
We designed a methodology for nonlinear enhancement with a simple nonlinear function to
overcome the dynamic range requirement usually associated contrast enhancement of
digital radiographs. By careful selection of wavelet filters and enhancement function, we
showed that artifacts can be eliminated. An additional advantage of our simple
enhancement function is that it includes traditional unsharp masking as a subset. We
showed how an edge-preserved denoising stage (wavelet shrinkage) can be appropriately
incorporated into our contrast enhancement framework, and introduced a method for
adaptive threshold estimation. We showed how denoising and enhancement operations
should be carried out for two dimensional images to avoid orientation distortions.

Our future research plans include the systematic study of gain and threshold parameters
for the nonlinear enhancement. In addition, in the next year we shall seek localized and
complex nonlinear methods to improve the performance of our existing algorithm.

We have design and implemented an interactive image editor for digital mammography,
called ”Xmam”. We have defined the functionality and data structures of a computer
image editor that can allow radiologists to interactively indicate on a computer screens
(simultaneously displaying four radiographic views of screening) regions diagnosed as
probable cancer. This tool shall facilitate the compilation of a large database of diagnosed
cases to provide ground truth for the development and verification of our computer

algorithms for the detection of breast cancer.
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During the next year, XMam shall evolve into a front-end for our state-of-the-art
mammography workstation as additional software is developed and we migrate our system
onto more sophisticated hardware.

In addition, methods for accomplishing adaptive contrast enhancement by multiscale
representations were further investigated. Contrast enhancement was applied to features of
importance to mammography including masses, spicules and microcalcifications.
Multiresolution representations provided an adaptive mechanism for the local emphasis of
such features blended into digitized mammograms. Average interpolation and
Deslauriers-Dubuc interpolation representations on an interval enabled us to enhance
arbitrary regions of interest within digital mammograms.

Enhancement of arbitrarily shaped ROT’s provides the radiologist with an interactive
capability to process only suspicious regions of a mammogram, while significantly reducing
execution time compared to processing an entire image matrix. In addition, the
representation of an auto-correlation shell was studied. We remain excited about this
representation and plan to further study its ability to enhance mammographic features
over arbitrary regions. These initial results are encouraging and suggest that wavelet based
image processing algorithms shall play an important role in improving the imaging
performance of digital mammography.

Finally, we reported on the development of objective ways to assess the performance of
wavelet image processing algorithms. Our objective is to develop techniques to evaluate
wavelet algorithms so they can then be optimized for clinical use in mammography.

Substantial progress was made in the development of techniques to assist in the
quantitative evaluation of wavelet based image processing algorithms. In addition, these
techniques were applied to optimize the three parameters available in current wavelet based
algorithms.

During the next year, we expect to continue our study of wavelet filter design and
selection in the refinement of our early basis functions (dyadic wavelets, phi-transform, and
hexagonal wavelets) conceived as initial instances in the evolution of three specialized
detectors. As described in our research plan, we shall design three ”detectors” to focus on
three distinct types of mammographic features: (1) microcalcifications, (2) spicular lesions
and (3) masses.

In summary, we have exceeded the goals as described in our Statement of Work for the

second year, and our research and development plans remain on schedule.
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